SMBHs and AGN in low mass galaxies:
Insights from cosmological simulations
SMBHs and AGN in low mass galaxies:
Insights from cosmological simulations
Figure: The BH occupation fraction for the local Universe (z = 0) predicted by the six simulations.
Haidar+22: (access to paper: link)
Recent systematic searches for massive black holes (BHs) in local dwarf galaxies led to the discovery of a population of faint Active Galactic Nuclei (AGN). We investigate the agreement of the BH and AGN populations in the Illustris, TNG, Horizon-AGN, EAGLE, and SIMBA simulations with current observational constraints in low-mass galaxies. We find that some of these simulations produce BHs that are too massive, and that the BH occupation fraction at z = 0 is not inherited from the simulation seeding modeling. The ability of BHs and their host galaxies to power an AGN de- pends on BH and galaxy subgrid modeling. The fraction of AGN in low-mass galaxies is not used to calibrate the simulations, and thus can be used to differentiate galaxy formation models. AGN fractions at z = 0 span two orders of magnitude at fixed galaxy stellar mass in simulations, similarly to observational constraints, but uncer- tainties and degeneracies affect both observations and simulations. The agreement is difficult to interpret due to differences in the masses of simulated and observed BHs, BH occupation fraction affected by numerical choices, and an unknown fraction of ob- scured AGN. Our work advocates for more thorough comparisons with observations to improve the modeling of cosmological simulations, and our understanding of BH and galaxy physics in the low-mass regime. The mass of BHs, their ability to efficiently accrete gas, and the AGN fraction in low-mass galaxies have important implications for the build-up of the entire BH and galaxy populations with time.